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The stability of the Hagen}Poiseuille #ow of a Newtonian #uid in an incompressible, viscoelas-
tic tube contained within a rigid, hollow cylinder is determined using linear stability analysis.
The stability of the system subjected to in"nitesimal axisymmetric or non-axisymmetric
disturbances is considered. The #uid and wall inertia terms are retained in their respective
equations of motion. A novel numerical strategy is introduced to study the stability of the
coupled #uid}structure system. The strategy alleviates the need for aninitial guess and thus
ensures that all the unstable modes within a given closed region in the complex eigenvalue plane
will be found. It is found that the system is unstable to both axisymmetric and non-axisymmet-
ric disturbances. Moreover, depending on the values of the control parameters, the "rst
unstable mode can be either an axisymmetric mode with the azimuthal wavenumber n"0 or
a non-axisymmetric mode with n"1. For a given azimuthal wavenumber, it is found that there
are no more than two unstable modes within the closed region considered here in the complex
plane. For both the axisymmetric and non-axisymmetric instabilities, one mode is a solid-based,
#ow-induced surface instability, while the other one is a #uid-based instability that asymptotes
to the least-damped rigid-wall mode as the thickness of the compliant wall tends to zero. All
four modes are stabilized, to di!erent degrees, by the solid viscosity.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

FOR CLOSE TO HALF A CENTURY the science and technology of compliant coatings has
fascinated, frustrated and occasionally grati"ed scientists and engineers searching for
methods to delay laminar-to-turbulent #ow transition, to reduce skin-friction drag in
turbulent wall-bounded #ows, to quell vibrations, and to suppress #ow-induced noise.
Compliant coatings o!er the potential for favorable interference with a wall-bounded #ow.
In its simplest form, the technique is passive, relatively easy to apply to an existing tube or
vehicle, and perhaps not too expensive. Unlike other drag reducing techniques such as
suction, injection, polymer or particle additives, passive compliant coatings do not require
slots, ducts or internal equipment of any kind.

Aside from reducing drag, other reasons for the perennial interest in studying compliant
coatings are their many other useful applications, for example as sound absorbent materials
0889}9746/02/030331#29 $35.00/0 � 2002 Elsevier Science Ltd. All rights reserved.
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in noisy #ow-carrying ducts in aero-engines, and as #exible surfaces to coat naval vessels for
the purposes of shielding their sonar arrays from the sound generated by the boundary-layer
pressure #uctuations and of reducing the e$ciency of their vibrating metal hulls as sound
radiators. An even more important reason to study compliant coatings is the factthat all tubes
carrying the bodily #uids of humans and other animals are #exible, and #uid}structure
interaction there constitutes a fascinating albeit formidable problem in physics.

1.1. THE PRESENT PROBLEM

In this paper, we consider a system where a viscoelastic tube is coupled with
a Hagen}Poiseuille #ow. The homogeneous, viscoelastic tube is a hollow cylinder surrounded
on the outside by a rigid wall, and the basic #ow inside the tube is the Hagen}Poiseuille #ow
in a circular pipe as schematically depicted in Figure 1. We numerically study the stability of
the coupled #uid}structure system to in"nitesimal axisymmetric or non-axisymmetric distur-
bances. The #uid and wall inertia terms are retained in the irrespective equations of motion.
Both the #uid #ow and the compliant wall are considered incompressible.

The stability of Hagen}Poiseuille #ow in a rigid circular pipe has been studied by
a number of authors including Corcos & Sellars (1959), Davey & Drazin (1969), Salwen
& Grosch (1972), Garg & Rouleau (1972) and Gill (1973). They all have concluded that the
#ow is stable to in"nitesimal axisymmetric disturbances as well as to in"nitesimal azi-
muthally varying disturbances. Moreover, they have shown that as the Reynolds number
tends to in"nity, the wavespeed tends to either unity or to zero with the decay rate
satisfying, respectively, B

�
(kRe)���� or F

�
(kRe)����, where B

�
and F

�
are constants

determined by Salwen & Grosch (1972), k is the axial wavenumber, and Re is the Reynolds
number.

The stability of Hagen}Poiseuille #ow in a compliant circular pipe has been studied by
Evrensel et al. (1993) and Kumaran (1995a), both of whom considered only low-Reynolds-
number #ows and therefore neglected inertia. Kumaran has shown that the coupled system
is unstable to axisymmetric perturbations. Inspection of the energy equation led the author
to explain this solid-based instability as being a manifestation of the energy transfer from
the mean #ow to the disturbance resulting from a discontinuity of the disturbance stream-
wise velocity at the interface. Kumaran (1995b) extended this work to higher Reynolds
numbers. He found that the coupled system in this case is stable to axisymmetric distur-
bances. At high Re, the rate of transport of energy due to the deformation work at the
interface is the negative of the rate of transport of energy in the wall layer due to the
Reynolds stress v

�
v
�
.

Kumaran (1996) employed a di!erent model for the compliant wall, considered an
inviscid #ow and developed a stability condition for both axisymmetric and azimuthally
Figure 1. Con"guration and de"nition of coordinate system.
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varying disturbances with high azimuthal wavenumbers. The application of this condition
to the Hagen}Poiseuille #ow showed that the axisymmetric disturbance is stable while the
azimuthally varying mode with high wavenumber may be unstable. Additionally, Shankar
& Kumaran (1999) considered the stability of nonparabolic #ows in #exible tubes.

The stability of the present system for moderate Reynolds numbers to axisymmetric
disturbances has been studied by Hamadiche (1997) and Hamadiche & Al-Farkh (1997).
They showed that there are two unstable modes. The neutral-stability curves related to
these two unstable modes were plotted in the planes formed by the di!erent control
parameters of the system. In particular, Hamadiche & Al-Farkh (1997) found that the
viscosity of the viscoelastic wall damps those two unstable modes. Kumaran (1998a, b) has
shown, independently, that the system is unstable to axisymmetric disturbances at moderate
Reynolds numbers. Very recently, Shankar & Kumaran (2000) extended the latter work to
non-axisymmetric disturbances.

Hamadiche (1998) has studied the stability of the coupled system to azimuthally varying
disturbances. He showed that such disturbances may be more unstable than axisymmetric
ones. Hamadiche (1999a,b) has examined the energy #ux from the #uid to the viscoelastic
wall through the interface. A comparison between the total energy #ux and the rate of
ampli"cation has been made. Hamadiche (1999a, b) concluded that the mode is unsta-
ble/stable when the energy #ux is from/to the #uid to/from the wall. Moreover, for low
Reynolds numbers, the instability is induced by the work of the streamwise viscous stress,
which is in agreement with the earlier conclusion of Kumaran (1998a, b). However, for high
Reynolds numbers, the instability is induced by the work of the forces perpendicular to the
wall for both axisymmetric and non-axisymmetric disturbances. Hamadiche (1999a, b)
found that even though the term related to the work of the forces perpendicular to the
interface does not contribute to the total variation of the system kinetic energy, it can
destabilize it. This observation can be explained as resulting from a redistribution of the
kinetic energy in the #uid and the solid: energy in the solid and less energy in the #uid.
Consequently, the form of the disturbance may also be modi"ed, which probably leads to
a change in the production rate near the wall, thus stabilizing or destabilizing the system
according to the sign of the production term.

In the present paper, a numerical method is developed to compute* without a need for
an initial guess* all the normal modes of the #uid}structure system within a given closed
region in the complex s-plane, where s stands for the complex eigenvalues of the system. The
obtained eigenvalues are used as initial values to a Newton}Raphson numerical scheme to
converge to more accurate eigenvalues. The continuation method is then used to compute
the eigenvalues when the physical parameters of the system vary and to determine the
neutral-stability curves. The present strategy was applied successfully to the
Hagen}Poiseuille #ow in a rigid-walled tube and the obtained eigenvalues were compared
with results found in the literature. The numerical strategy was also applied by Hamadiche
(1997) to a known case of a viscoelastic-walled tube. The agreement between the results
obtained by our method and the results found in the literature is again very good. The
present article extends, complements as well as completes the "ve papers by the "rst author
cited above. It o!ers newmaterial as well as a single English-language source of the research
presented earlier in French.

1.2. BACKGROUND

The original interest in the "eld of compliant coatings was spurred by the experiments of
Kramer (1957) who demonstrated a coating design based on dolphin's epidermis and
claimed substantial transition delay and drag reduction in hydrodynamic #ows. Those
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experiments were conducted in the seemingly less-than-ideal environment of Long Beach
Harbor, CA. Subsequent laboratory attempts to substantiate Kramer's results failed, and
the initial interest in the idea faded. A similar bout of excitement and frustration that dealt
mostly with the reduction of skin-friction drag in turbulent #ows for aeronautical applica-
tions followed. Those results were summarized in the comprehensive review by Bushnell
et al. (1977). During the early 1980s, interest in the subject was rejuvenated, mostly
motivated by attempts to improve the performance of underwater vehicles. Signi"cant
advances were made during this period in numerical and analytical methods to solve the
coupled #uid}structure problem. New experimental tools were developed to measure the
minute yet important surface deformation caused by the unsteady #uid forces. Research
during this period was reviewed by Gad-el-Hak (1986a, 1987, 1996) and Carpenter (1990).

Careful analyses by Carpenter & Garrad (1985), Willis (1986) and Lucey & Carpenter
(1995), as well as the well-controlled experiments reported by Willis (1986), Daniel et al.
(1987) and Gaster (1988) have, for the "rst time, provided direct con"rmation of the
transition-delaying potential of compliant coatings, convincingly made a case for the
validity of Kramer's original claims, and o!ered a plausible explanation for the failure of
the subsequent laboratory experiments. There is little doubt now that compliant coatings
can be rationally designed to delay transition and to suppress noise on marine vehicles and
other practical hydrodynamic devices. Transition Reynolds numbers that exceed by an
order of magnitude those on rigid-surface boundary layers can be readily achieved. The
literature on compliant coatings is vast and the reader is referred to the following papers
and references therein for more background on the subject: et al. (1977), Gad-el-Hak et al.
(1984), Gad-el-Hak (1986a, b, 1987, 1996, 2000), Riley et al. (1988), Carpenter (1988, 1990,
1993, 1998), Lucey & Carpenter (1993) andMetcalfe (1994). The book by Gad-el-Hak (2000)
places compliant coatings within the broader area of #ow control.

1.3. SYSTEM INSTABILITIES

From a fundamental viewpoint, a rich variety of #uid}structure interactions exists when
a #uid #ows over a surface that is able to interact with the #ow. Not surprisingly, instability
modes proliferate when two wave-bearing media are coupled. Some waves are #ow-based,
some are wall-based, and some are a result of the coalescence of both kinds of waves. What
is most appealing about compliant coatings is their potential to inhibit, or to foster, the
dynamic instabilities that characterize both transitional and turbulent boundary-layer
#ows, and in turn to modify the mass, heat and momentum #uxes and change the drag and
the acoustic properties. While it is relatively easy to suppress a particular instability mode,
the challenge is of course to prevent other modes from growing if the aim is, say, to delay
laminar-to-turbulent #ow transition. From a practical point of view, it is obvious that an
in-depth understanding of the coupled system instabilities is a prerequisite for rationally
designing a coating that meets a given objective.

There are at least three classi"cation schemes for the #uid}structure waves, each with its
own merits. The original scheme is attributable to Landahl (1962) and Benjamin (1963). It
divides the waves into three classes according to their response to irreversible energy
transfer to and from the compliant wall. Both class A and class B disturbances are
essentially oscillations involving conservative energy exchanges between the #uid and solid,
but their stability is determined by the net e!ect of irreversible processes such as dissipation
in the coating or energy transfer to the solid by nonconservative hydrodynamic forces.
Class A oscillations are Tollmien}Schlichting waves in the boundary layer, modi"ed by the
wall compliance, in other words by the motion of the solid in response to the pressure and
shear-stress #uctuations in the #ow. The disturbance eigenfunction for class A waves has its
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maximum amplitude within the #uid region. Such waves are stabilized by the irreversible
energy transfer from the #uid to the coating, but destabilized by dissipation in the wall.

Class B waves are found in both the #uid and the wall. However, the disturbance
eigenfunction has its maximum amplitude at the #uid}solid interface and thus those waves
are principally wall-basedmodes of instability. Such instability would not exist, had the wall
been rigid. The instability is due to the downstream-running free wave in the solid being
modi"ed by the #uid loading. The destabilization of class B waves is e!ected by the phase
di!erence between the pressure perturbation and the wall deformation, which allows a #ow
of energy from the #uid into the wall. The behavior of Class B waves is the reverse of that for
class A waves: stabilized by wall damping but destabilized by the nonconservative hy-
drodynamic forces. Essentially, class B waves are ampli"ed when the #ow supplies su$cient
energy to counterbalance the coating's internal dissipation.

Finally, class C waves are akin to the inviscid Kelvin}Helmholtz instability and occur
when conservative hydrodynamic forces cause a unidirectional transfer of energy to the
solid. The pressure distribution in an inviscid #ow over a wavy wall is in exact antiphase
with the elevation. In that case, class C waves can grow on the solid surface only if the
pressure amplitude is so large as to outweigh the coating sti!ness. Class C waves are the
result of a modal-coalescence instability where the #ow speed is su$ciently high such that
the originally upstream-running wall-free-waves are turned to travel downstream and
merge with the modi"ed downstream-running wall waves. Irreversible processes in both the
#uid and solid have a negligible e!ect on class C instabilities.

If one considers the total disturbance energy of the coupled #uid}solid system, a decrease
in that energy leads to an increase in the amplitude of class A instabilities, class B is
associated with an energy increase, and virtually no change in total energy accompanies
class C waves. In other words, any nonconservative #ow of activation energy from/to the
system must be accompanied by disturbance growth of class A/B waves, while the irrevers-
ible energy transfer for class C instability is nearly zero.

The second classi"cation scheme is given by Carpenter & Garrad (1985, 1986). It simply
divides the waves into #uid-based and solid-based. Tollmien}Schlichting instability (TSI) is
an example of #uid-based waves. The solid-based, #ow-induced surface instabilities (FISI)
are closely analogous to the instabilities studied in hydro- and aeroelasticity, and include
both the travelling-wave #utter that moves at speeds close to the solid free-wavespeed (class
B) and the essentially static*and more dangerous*divergence waves (class C). The main
drawback of this classi"cation scheme is that under certain circumstances, the #uid-based
T}S waves and the solid-based #utter can coalesce to form a powerful new instability
termed the transitional mode by Sen & Arora (1988). According to the energy criterion
advanced by Landahl (1962), this latest instability is a second kind of class C wave. In
a physical experiment, however, it is rather di$cult to distinguish between static divergence
and the transitional mode.

The third scheme to classify the instability waves considers whether they are convective
or absolute (Huerre &Monkewitz, 1990). An instability mode is considered to be absolute if
there is a pinch point in the Fourier contour, which prevents the temporal ampli"cation rate
from being reduced to zero. In this case, the unstable mode propagates upstream as well as
downstream and often has a very small (or even zero) group velocity in comparison with the
velocity of the mean #ow. On the other hand, the unstable development of a disturbance is
said to be convective when none of its constituent modes possesses zero group velocity.
Both classes A and B are convective, while class C divergence and the transitional modes are
absolute. As Carpenter (1990) points out, the occurrence of absolute instabilities would lead
to profound changes in the laminar-to-turbulent #ow transition process. &&It is therefore
pointless to consider reducing their growth rate or postponing their appearance to higher
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Reynolds number; nothing short of complete suppression would work.'' Figure 2 combines
and summarizes all three classi"cation schemes.

1.4. OUTLINE

In the present study, the stability of the Hagen}Poiseuille #ow of a Newtonian #uid in an
incompressible, viscoelastic tube contained within a rigid, hollow cylinder is determined
using linear stability analysis. The stability of the system subjected to in"nitesimal axisym-
metric or non-axisymmetric disturbances is considered. A novel numerical method is
introduced to study * without a need for an initial guess * the stability of the coupled
#uid}structure system.

The paper is organized as follows. Following these introductory remarks, the linearized
equations of motion for non-axisymmetric and axisymmetric disturbances are developed in
Section 2. The numerical approach and the novel eigenvalue search technique employed
here are introduced in Section 3. This is followed in Section 4 by the computed results of the
stability of the system to axisymmetric and non-axisymmetric disturbances. Section 5 dis-
cusses the energy exchanges between the #uid and the compliant coating. Finally, a dis-
cussion of the results and concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

We wish to study the stability of an incompressible, Newtonian #uid of density �, viscosity
�, and maximum velocity<, #owing in a compliant tube of inner radius R, and outer radius
RH. The compliant wall is made of an incompressible, viscoelastic material of density
� equal to the #uid density, viscosity �

�
, and shear modulus G. The pliable material is
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surrounded by a rigid wall at the surface r"RH, as shown in Figure 1. In the remainder of
this paper, dimensionless variables will be used. The length scale is the radius of the tube R,
the time scale is (�R�/G)���, and the velocity scale is (G/�)���. The dimensionless mean #ow
velocity pro"le is a Hagen}Poiseuille #ow,

v"�(1!r�), (1)

where �"(�<�/G)���. Clearly, � is a measure of the relative compliance of the coating since
an increase in its value implies a relatively softer material. The governing equations for the
#uid are the Navier}Stokes mass and momentum equations:

�
�
v
�
"0, (2)

�
�
v
�
#v

�
�
�
v
�
"!�

�
p#����

�
v
�
, (3)

where �
�
"�/�t, �

�
"�/�x

�
, �"Re��, and Re,�<R/� is the Reynolds number. The

pressure p in the #uid is nondimensionalized by the shear modulus G. The stress in the #uid
is

�
��

"!p�
��

#��(�
�
v
�
#�

�
v
�
). (4)

The compliant wall of the tube is modelled using the dynamical equations for an
incompressible, viscoelastic material (Landau & Lifshitz 1970). The dynamics of the wall is
described by a displacement "eld u

�
, which represents the displacement of material points

from their steady-state positions dueto the stresses at the interface. For an incompressible
material, the displacement "eld u

�
satis"es the solenoidal condition

�
�
u
�
"0, (5)

and the momentum conservation equation is

��
�
u
�
"!�

�
p#��

�
u
�
#���

�
��
�
v
�
. (6)

The left-hand side represents the rate of change of momentum in a volume element, while
the three terms on the right-hand side are, respectively, the divergence of the pressure, the
divergence of an elastic stress due to the strain in the material, and the divergence of
a viscous stress due to the strain rate. In the latter, the wall velocity is given by v

�
"�

�
u
�
, and

�
�
"�

�
/�. The components of the stress tensor in the solid are given by

�
��

"!p�
��

#(�
�
u
�
#�

�
u
�
)#���

�
(�

�
v
�
#�

�
v
�
). (7)

Note that the present formulation neglects the e!ect of pressure gradient along the
undisturbed #ow on the compliant wall deformation. Owing to this favorable pressure
gradient, the deformation would decrease along the tube, thus slightly reducing the e!ective
tube radius R. A variable-radius pipe is a challenging, spatially in homogeneous problem
which we defer to another study, and the radius R is taken as constant in the present
formulation.

2.1. NON-AXISYMMETRIC DISTURBANCES

In the linear stability analysis, small perturbation in the form of Fourier modes are
introduced in the #uid velocity "eld and the wall displacement "eld:

(v
�
, p)"(vJ

�
, pJ )e����	�
�	���#cc, (8)

(u
�
, p)"(uJ

�
, pJ )e����	�
�	���#cc, (9)
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where vJ
�
and uJ

�
are the eigenfunctions which are functions of r only, k and n are the axial

and the azimuthal wavenumbers, respectively, p is the pressure disturbance, and cc stands
for complex conjugate. The real part of the eigenvalue s is the (temporal) growth rate of the
perturbation, and the imaginary part is the frequency. Upon inserting the above perturba-
tion velocity (8) into the conservation equations for the #uid velocity "eld (2) and (3) and
neglecting the nonlinear terms in vJ

�
, the following equations are obtained for the eigenfunc-

tion vJ
�
in cylindrical coordinates:

[d
�
#r��]vJ

�
#ikvJ

�
#inr��vJ �"0, (10)

[s#�ik(1!r�)]vJ
�
"!d

�
pJ #��	[d�

�
#r��d

�
!r��(1#n�)!k�]vJ

�
!2inr��vJ �
, (11)

[s#�ik(1!r�)]vJ
�
!2�rvJ

�
"!ikpJ #��[d�

�
#r��d

�
!(k�#n�r��)]vJ

�
, (12)

[s#�ik(1!r�)]vJ �"!inpJ r��#��	[d�
�
#r��d

�
!r��(1#n�)!k�]vJ �#2inr��vJ

�

,

(13)

where d
�
stands for derivative with respect to r, and pJ (r) is the eigenfunction for the pressure.

Similarly, the equations for the eigenfunction uJ
�
can be obtained by inserting the equation

for the solid displacement perturbation (9) into the conservation equations (5) and (6),
yielding cylindrical coordinates

[d
�
#r��]uJ

�
#ikuJ

�
#inr��uJ �"0, (14)

s�uJ
�
"!d

�
pJ #(1#���

�
s)	[d�

�
#r��d

�
!r��(1#n�)!k�]uJ

�
!2inr��uJ �
, (15)

s�uJ
�
"!ikpJ #(1#���

�
s)[d�

�
#r��d

�
!(k�#n�r��)]uJ

�
, (16)

s�uJ �"!inr��pJ #(1#���
�
s)	[d�

�
#r��d

�
!r��(1#n�)!k�]uJ �#2inr��uJ

�

. (17)

The boundary conditions at the center of the tube r"0, applied to the azimuthally
varying modes with azimuthal wavenumber n"1, are

vJ
�
#ivJ �"0, vJ

�
"pJ "0, (18, 19)

at the interface r"1

vJ
�
"suJ

�
, vJ

�
!2�uJ

�
"suJ

�
, vJ �"suJ � , (20, 21, 22)

�J
��

"�J
��
, �J

��"�J
�� , �J

��
"�J

��
, (23)

and at the surface r"H

uJ
�
"0, uJ �"0, uJ

�
"0. (24)

The term !2�uJ
�
in equation (21) represents the variation of the mean velocity at the

interface due to the surface displacement.
The boundary conditions at r"0, applied to the two components of non-axisymmetric

eigenmodes (vJ
�
, vJ �) with azimuthal wavenumber n'1, are

vJ
�
"vJ �"0, (25)

the remaining boundary conditions are identical to those applied to the eigenmodes with
azimuthal wavenumber n"1.
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The stress tensor components in equation (23) are

�J
��

"!pJ #2��(d
�
vJ
�
), (26)

�J
��

"(��)(d
�
vJ
�
#ikvJ

�
), (27)

�J
��"��(inr��vJ

�
#d

�
vJ �!r��vJ � ), (28)

�J
��

"!pJ #2(1#���
�
s)d

�
uJ
�
, (29)

�J
��

"(1#���
�
s)(d

�
uJ
�
#ikuJ

�
), (30)

�J
��"��(inr��uJ

�
#d

�
uJ �!r��uJ �). (31)

The linearized mass and momentum equations for the #uid and solid can be transformed
into a system of "rst-order di!erential equations. In order to do that, we take the derivative
with respect to r of all the terms in the continuity equations (10) and (14). This yields

[d�
�
#r��d

�
!r��]vJ

�
#ikd

�
vJ
�
#ind

�
(r��vJ �)"0, (32)

[d�
�
#r��d

�
!r��]uJ

�
#ikd

�
uJ
�
#ind

�
(r��uJ � )"0. (33)

equations (32) and (33) give d�
�
vJ
�
and d�

�
uJ
�
as functions of the velocity and displacement

components and their "rst-order derivatives. If these functions are substituted into equa-
tions (11) and (15), the system can be transformed into the following "rst-order di!erential
equations, "rst for the #uid:

d
�
vJ
�
"!r��v

�
!ikvJ

�
!inr��vJ � , (34)

d
�
pJ "![s#�ik(1!r�)]vJ

�
!��	(r��n�#k�)vJ

�
#inr��vJ �#ik�I

�
#inr���I �
, (35)

d
�
�I
�
"!r���I

�
#(k�#n�r��)vJ

�
#(��)��[s#�ik(1!r�)]vJ

�
!2���rvJ

�

#ik(��)��pJ , (36)

d
�
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�
"�I

�
, (37)

d
�
�I �"!r���I �#[r��(1#n�)#k�]vJ �!2inr��vJ

�
#(��)��[s#�ik(1!r�)]vJ �

#in(r��)��pJ , (38)

d
�
vJ �"�I � , (39)

and the following "rst-order di!erential equations for the compliant solid:

d
�
uJ
�
"!r��u

�
!ikuJ

�
!inr��uJ � , (40)

d
�
pJ "!s�uJ

�
!(1#���

�
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#inr��uJ �#ik�J

�
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, (41)
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�
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s)��s�uJ
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s)��pJ , (42)

d
�
uJ
�
"�J

�
, (43)

d
�
�J �"!r���J �#[r��(1#n�)#k�]uJ �!2inr��uJ

�
#(1#���

�
s)��[s�uJ �#inr��pJ ], (44)

d
�
uJ �"�J � , (45)

where the vectors (�
�
, �� , �� ) and (�

�
, �� , ��) are, respectively, the derivatives of (v

�
, v� , v� ) and

(u
�
, u� , u�) with respect to r.
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2.2. AXISYMMETRIC DISTURBANCES

To study the temporal stability of the coupled system to axisymmetric disturbances, small
perturbation in the form of axisymmetric Fourier modes are introduced in the #uid velocity
"eld and the wall displacement "eld. These read, respectively, as

v
�
"vJ

�
e����	���#cc, (46)

u
�
"uJ

�
e����	���#cc. (47)

The "rst-order di!erential equations related to axisymmetric disturbances can readily be
obtained by inserting n"0, vJ �"0, and uJ �"0 into equations (34)}(45). The corresponding
boundary conditions read as follows:
at the center of the tube, r"0,

vJ
�
"0, d

�
vJ
�
"0, (48)

at the interface, r"1,

vJ
�
"suJ

�
, vJ

�
!2�uJ

�
"suJ

�
, (49)

�J
��

"�J
��
, �J

��
"�J

��
, (50)

and at the surface, r"H,

uJ
�
"0, uJ

�
"0. (51)

3. NUMERICAL METHOD

Di!erential equations (34)}(39) and their equivalents for the axisymmetric disturbances
were solved using a fourth-order Runge}Kutta method to arrive at three independent
solutions (X

�
, X

�
, X

�
) each of which satisfy the boundary conditions at r"0. The indepen-

dence of the three solutions is ensured by starting the computation with one of the three
independent vectors formed by several values of the vector (�

�
, �� , ��

) at r"0. The chosen
values must form a free set of vectors. Then the general solution in the #uid is

Z
�
"A

�
X

�
#A

�
X

�
#A

�
X

�
, (52)

where (A
�
, A

�
, A

�
) are arbitrary constants.

Similarly, for the displacement "eld in the solid, we obtain three independent solutions
(Y

�
,Y

�
,Y

�
) each of which satisfy the boundary conditions at r"H. The independence of

the solutions is also ensured by beginning the computation with one of the three indepen-
dent values of the vector (�

�
, �� , �� ) at r"H. The general solution in the solid medium is

Z
�
"B

�
Y

�
#B

�
Y

�
#B

�
Y

�
, (53)

where (B
�
, B

�
, B

�
) are arbitrary constants. The boundary conditions at r"1 lead to the

eigenvalue problem

M C"0, (54)

where the elements of the 6�6 matrix M are a linear combination of the particular solution
components (X

�
, X

�
, X

�
), (Y

�
,Y

�
,Y

�
) and their derivatives with respect to r at r"1, which

involve k, n, Re,H, �
�
and �. The components of the vector C are the six arbitrary constants

A
�
, A

�
, A

�
, B

�
, B

�
, B

�
.
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The characteristic equation is obtained by setting the determinant of the characteristic
matrix M to zero. In order to use the continuation method, the derivative with respect to
s of the determinant of the matrix M is computed, where s is the complex eigenvalue of the
coupled system. For this, the derivative with respect to s of the linearized mass and
momentum equations is needed which leads to another system of "rst-order di!erential
equations. The resulting system is solved using a fourth-order Runge}Kutta scheme. This
leads to the derivative with respect to s of the elements of the matrix M which gives the
derivative of the determinant of M. The solution of the characteristic equation gives the
growth rate as a function of the Reynolds number for di!erent values of the parameters k, n,
H, �

�
and �. The e!ects of changes in the parameter values on the system stability are

examined in Sections 4.1 and 4.2 for, respectively, the axisymmetric and non-axisymmetric
disturbances.

3.1. EIGENVALUE SEARCH TECHNIQUE

The method proposed by Garg & Rouleau (1972) to compute the number of poles of
a complex function lying within a closed curve is extended in this paper to determine all the
singularities of a complex function lying within a closed region in the complex eigenvalue
plane. Let f (z) be the determinant of the matrix M. This function is a priori assumed, and
later veri"ed, to be analytic. Cauchy's theorem gives

2i (N!P)"�
�

�
�
f (z)

f (z)
dz, (55)

where N and P denote, respectively, the number of zeros and the number of poles of the
function f (z) * counted with their multiplicity * within the closed region C. Since the
determinant is an analytic function of the complex eigenvalue s, we have

�
�

f (z) dz"0, (56)

so that P"0. In our computation, the curve C is a circle centered on the origin of the
complex z-plane. Knowing the number of zeros of the determinantNwhich is the number of
eigenmodes, we can use Cauchy's theorem and the theorem of the residue to evaluate the
sum of eigenvalues as well as the sum of their jth power inside the closed region C. Thus,

2i�z�
�

"�
�

z�
�
�
f (z)

f (z)
dz, (57)

where the sum is over the su$x m, 14m4N, the exponent j is held constant, and z
�
is the

value of the complex variable z in the pole m, which is the desired eigenvalue. Having the
number of zeros N from equation (55), equation (57) gives N nonlinear equations which in
principle allows us to determine the eigenvalues. The solution of such a system is, however,
very di$cult to obtain when N is large. In order to avoid this di$culty, the diameter of the
circleC is "rst de"ned in such a way that the number of zerosN43, which is the maximum
degree of a polynomial that can be solved analytically. Having the previous eigenvalues, the
diameter of the circle can now be increased to add not more than three new eigenvalues. The
newly obtained nonlinear system from equation (57) is transformed again into a polynomial
of a degree equal to the number of the added eigenvalues. The resulting polynomial can then
be solved to give new eigenvalues, and so on until a value of the diameter C is reached
beyond which all the added modes have a high ampli"cation rate, high frequency, or both.
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Such spurious modes are not of physical signi"cance and one may ignore them. When the
desired value of the diameter is reached, an iterative technique is used in order to eliminate
the cut-o! error and to converge to the exact eigenvalues. The continuation method then
permits the computation of the eigenvalues for other values of the wall and #uid parameters.

Note that in the method used by Garg & Rouleau (1972), the examined region has to be
very small for the iterative process to converge. In the present method, we compute the
exact values of the eigenmodes in the examined region where the number of modes does not
exceed three. The area examined is not necessarily small and the iterative process is used
only to eliminate the cut-o! error.

It is also noted that the eigenvalue search technique developed here is more e$cient and
does not produce spurious modes as occasionaly encountered when using the classical QZ
search technique used by, for example, Yeo et al. (1996) to study the absolute instability of
a boundary layer #ow over a viscoelastic wall. In contrast to the 6�6 matrix resulting from
our search strategy, the QZ search technique results in a matrix size of the order of 4N,
where N is the number of discrete points in the physical space.

In order to validate our method, it was used to "nd the least-damped disturbance to
Poiseuille #ow in a circular, rigid-walled pipe, previously obtained by Gill (1973). The
agreement between Gill's results and the present method is excellent, and that agreement is
true for both axisymmetric and non-axisymmetric, temporally damped as well as spatially
decaying disturbances.

As the no-displacement conditions are applied at r"H, it is expected that the system
described behaves like a rigid-walled tube when the depth of the viscoelastic material is
small in comparison with the radius of the tube. Figure 3 displays the rate of ampli"cation
(s
�
) and the wavespeed (s

�
) of the least-damped modes obtained by the present method with

H"1)05. The same "gure shows a comparison with the Salwen & Grosch (1972) numerical
calculations in a rigid-walled tube for the azimuthal wavenumbers n"1, 2, 3, 4. The values
of the ampli"cation rate and the wavespeed for the rigid tube were computed from the
Salwen and Grosch formulas recalled in Section 1.1. The agreement between the present
method and their results is excellent when the Reynolds number is high, where the formulas
are expected to be accurate. The discrepancy observed at low Reynolds numbers is likely
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due to the failure of the Salwen and Grosch formulas in this regime. Moreover, as will be
discussed in the following section, Figures 4 and 9 show the limits of the ampli"cation rate
and the wavespeed of, respectively, the axisymmetric and non-axisymmetric modes when
the depth of the viscoelastic material goes to zero (HP1). The "gures also show a compari-
son with the rigid-tube results given by the Salwen and Grosch formulas. As can be seen, the
agreement between the present Mode II and Mode IV results- and the rigid-tube results is
good.

A comparison with the solution obtained by Kumaran (1995a) for the Hagen}Poiseuille
#ow in a viscoelastic tube has been made in Hamadiche & Al-Farkh (1997). The agreement
between the results of the present numerical approach and the results of Kumaran was
found to be of the same order as the algorithm round-o! error.

4. RESULTS

4.1. STABILITY OF AXISYMMETRIC DISTURBANCES

For all the wall and #uid parameters explored here in the closed region in the complex
s-plane, we do not "ndmore than two unstable axisymmetricmodes, which we termMode I
and Mode II. The axisymmetric unstable Mode I is strongly stable for H(1)7, and
-Four di!erent instability modes are identi"ed in the present study. These will be discussed in the following
section.
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divergesA when the depth of the viscoelastic material tends to zero, as can be seen in
Figure 4(a). For H'1)7, Mode I is weakly unstable. At small values of H, Mode I wave-
speed is much larger than 1, as can be seen in Figure 4(b). Recalling that the rigid-walled
tube result of Salwen&Grosch (1972) gives a wavespeed that tends to either unity or zero as
the Reynolds number RePR, it then follows that Mode I instability does not exist in rigid
tubes, and is due to the viscoelastic wall. According to Carpenter and Garrad (1985), this is
a solid-based, #ow-induced surface instability.

The second axisymmetric unstable mode, Mode II, is identi"ed with the least-damped
mode in the rigid-walled tube when the depth of the viscoelastic coating goes to zero, as
shown in Figure 4(c,d). This is then a #uid-based instability according to the classi"cation
scheme of Carpenter & Garrad (1985) described in Section 1.3. The kink in Figure 4(d) was
carefully examined and the curve in its vicinity is in fact continuous. Therefore, this kink is
a mere indication of rapid variation in the wavespeed with the coating thickness and is not
a result of bifurcation or mode jumping in the numerical scheme.

The neutral-stability curves in the planes (�, Re) and (k, Re) are very complex as has been
shown by Hamadiche & Al-Farkh (1997). Figures 5 and 6 show examples of, respectively,
Mode I and Mode II neutral-stability curves in the plane (k, Re) for several values of �. The
axisymmetric Mode I becomes stable at high Reynolds number as the asymptotic analysis
of Kumaran (1995b) and the numerical results of Hamadiche (1999a) have shown. The e!ect
of moderately increasing the Reynolds number is to not only stabilize Mode I for all values
of � examined, as shown in Figure 5, but also to increase the instability of the second
axisymmetric Mode II for �"4 and 6, as shown in Figure 6. For �"8, the k-range of
Mode II instability actually decreases with Reynolds number increase.

Note that the system is unstable at low Reynolds numbers when the shear modulus is
su$ciently small. This may be explained by the fact that the energy needed to destabilize the
system is very small when the coating is su$ciently soft. In the region labelled `not
exploreda in Figures 5 and 6, a new unstable region may exist, as has been shown by
Hamadiche & Al-Farkh (1997).

At low Re, the e!ect of decreasing the depth of the viscoelastic material is to stabilize the
system as shown for Mode I instability in Figure 7. As expected, the system is stable when
the depth of the viscoelastic material goes to zero. Note that only long-wave (low-wavenum-
ber) instability persists when the Reynolds number and the coating thickness increase. In
Figure 8, we plot, for both Mode I and Mode II, typical radial pro"les for the disturbance
velocity and stress. Each pro"le extends from the pipe centerline to the interface between the
compliant coating and the rigid wall. We observe that the important motion is in the axial
direction and that the disturbance inside the #uid medium is almost constant. More
importantly, the energy production by the Reynolds stress, !v

�
v
�
dv/dr, is negative for

Mode I and positive for Mode II- as can be seen in Figure 8(a) and 8(b), respectively.
Therefore, the Reynolds stress tends to stabilize Mode I disturbance but destabilize
Mode II, even though both modes are unstable under the conditions considered in this
"gure. As will be shown in Section 5, the energy disturbance production for Mode I is done
by the work of the viscous shear stress at the interface. Of note is the position of the
disturbance peak amplitude. For the solid-based Mode I, this occurs at the #uid}solid
interface much like the travelling-wave #utter eigenfunction described by Carpenter & Gaj-
jar (1990). The modi"ed rigid-pipe Mode II, on the other hand, has its peak amplitude
occurring in the #ow.
ANot to be confused with static-divergence waves. Mode I becomes extremely stabilized as the coating thickness
goes to zero.

-For Mode II, the Reynolds stress v
�
v
�
is large and positive near the wall, but changes sign and diminishes far

from the #uid}solid interface.
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4.2. STABILITY OF NON-AXISYMMETRIC DISTURBANCES

For all the wall and #uid parameters explored here in the closed region in the complex
s-plane, we do not "nd more than two unstable non-axisymmetric modes for each value of
the azimuthal wavenumber n. For n"1, we term the corresponding modes Mode III and
Mode IV. The non-axisymmetric Mode III becomes extremely stabilized when the depth of
the viscoelastic material goes to zero as shown in Figure 9(a). This is a solid-based,
#ow-induced surface instability. The second non-axisymmetric unstable mode, Mode IV,
is identi"ed with the least-damped mode in the rigid-walled tube when the depth of
the viscoelastic coating goes to zero, as shown in Figure 9(c,d). This is a #uid-based
instability.
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Depending on the #uid and wall parameters, the "rst instability to be observed may be
axisymmetric (n"0) or non-axisymmetric (n"1, 2,2). Figure 10 shows the neutral-
stability curves in the (�, Re)-plane for di!erent modes and azimuthal wavenumbers. The
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region below each curve is stable and above each curve is unstable. All the modes are stable
at su$ciently low �, which is expected because, for a given Re, the shear modulus G goes to
in"nity when � goes to zero. The coating is sti!er and hence stable at low �. When
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� increases to a value above the neutral curve, the coupled system becomes unstable. The
stable regions are bounded by the Re-axis and the respective neutral curves, which in the
order of increasing Reynolds number are stable regions for Mode I, Mode III, Mode IV,
and "nally Mode II. As an example, at the point (�, Re)"(10, 100), Mode III is unstable
while Mode I is stable. For a given Reynolds number, the non-axisymmetric mode with
n"1 "rst becomes unstable as the coating becomes softer, followed by the non-axisymmet-
ric modes with n"2, 3 and 4. Again for a given Re, the axisymmetric Mode I becomes
unstable at higher values of � as compared to the non-axisymmetric modes with n"1 and
2, but at lower values of � as compared to the non-axisymmetric modes with n"3 and 4.

For the parameters considered in Figure 10, the system is most unstable for the
axisymmetric modes for low and high Reynolds numbers and the non-axisymmetric modes
for intermediate Reynolds numbers. The axisymmetric and non-axisymmetric modes ob-
served to be the "rst unstable modes at low Reynolds number are Mode I and Mode III,
while the axisymmetric and non-axisymmetric modes selected at high Reynolds number are
Mode II and Mode IV. As will be shown later, however, for values of the Reynolds number
higher than those considered in Figure 10,Mode I, Mode II andMode IV become stable for
both azimuthal wavenumbers n"0 and 1, while the non-axisymmetric Mode III remains
unstable. Thus, for a high Reynolds number, say Re'1000, the non-axisymmetric
Mode III with the azimuthal wavenumber n"1 is the sole unstable mode.

Figure 10 also shows that for Re(50, the non-axisymmetric mode with azimuthal
wavenumber n"3 becomes unstable at lower values of � than the non-axisymmetric mode
with azimuthal wavenumber n"4. This trend is reversed for Re'50. Consequently, it is
di$cult to predict from this result the shape of the neutral-stability curves for large values of
n where there may exist other kinds of instabilities as was shown in the inviscid calculations
of Kumaran (1996).

Figure 11 shows the neutral-stability curves in the plane (k, Re) for di!erent values of �.
The curves labelled �"7 and 8 each has two branches. The lower branch is associated with
the non-axisymmetric Mode III, while the top branch is associated with Mode IV instabil-
ity. For �59, the two branches do not meet and we plotted only the respective lower
branch.

The e!ect of increasing the depth of the viscoelastic material is to destabilize the system to
non-axisymmetric modes, as shown in Figure 12 where Mode IV neutral-stability curves in
the plane (H, Re) are plotted for two values of the axial wavenumber and two values of the
viscosity of the coating. Furthermore, Figure 12 shows that the instabilities introduced by
the high-wavenumber (short-wavelength) modes are limited to the low-Reynolds-number
regime. Both of these results are qualitatively similar to the axisymmetric modes results
discussed in Section 4.1. Figure 12 also indicates the e!ect of the viscosity ratio �

�
on the

stability of the system. Note that increasing the viscosity of the viscoelastic medium slightly
changes the stability of the system. The instability of Mode IV seems to be weakly a!ected
by the irreversible processes in the solid, which is characteristic of class C waves discussed in
Section 1.3.

Figure 13 shows typical radial pro"les for the disturbance velocity and stress. This is
shown for the non-axisymmetric Mode III and Mode IV instabilities, both having the
azimuthal wavenumber n"1. The amplitude of the radial velocity component is small
when compared to the axial velocity component at the interface between the #uid and
compliant coating, as seen in Figures 13(a,b). Furthermore, the axial velocity component
dominates the entire #uid and solid media instead of being con"ned to a thin region near
the interface, as is the case in a rigid-walled tube. For Mode III, the energy production by
the Reynolds stress, !v

�
v
�
dv/dr, is negative in a narrow region near the wall but is

predominately positive in the rest of the #uid region, as can be seen in Figure 13(a), so that
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the Reynolds stress tends to destabilize the disturbance. It will be shown in the following
section that the energy of Mode III disturbance is produced by both the Reynolds stress and
by the work of the viscous shear stress at the interface. For Mode IV, the energy production
by the Reynolds stress is negative [Figure 13(b)], which stabilizes this mode.

5. ENERGY CONSIDERATIONS

In this section, we consider the energy transfer between the #uid and compliant media. Let
�(r, �, x, t)"0 be the equation of the interface. The function � may be expanded in the
vicinity of the equilibrium position at r"1, this leads to

�(1, �,x, t)#(r!1)d
�
�#O[(r!1)�]"0. (58)
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For an in"nitesimal disturbance, the previous equation is reduced to

r"1!�(�,x, t), (59)

where at r"1,

�(�,x, t)"
�(1, �, x, t)
d
�
�(1, �,x, t)

. (60)

It follows that the outward normal at the interface is given by

n"�d� ,
��
r
, �

��[r!1#�(�,x, t)]"�1,
���
r

, �
�
��. (61)

For brevity, we write

n"�1,
���
r

, �
�
��"(1, �, �), (62)

where �, � are in"nitesimal quantities. The force applied by the elastic medium on the side of
the surface element ds located at the interface is

dF"� ) n ds, (63)
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where � is the stress tensor. Through the surface element ds, the elastic medium receives the
in"nitesimal energy quantity

dp"!dF ) �
�
u ds"!(� ) n) ) �

�
u ds, (64)

where �
�
u is the velocity of a solid particle at the interface. Expansion of the stress term gives

(� ) n) )�
�
u"�

�
u
�
(�

��
#��

��#��
��
)#�

�
u�(���#����#���� )#�

�
u
�
(�

��
#��

��#��
��
).

(65)

All the derivatives in the above equation are computed at r"1. Moreover, the terms that
contain � or � may be neglected in the linear theory, so that the energy #ux from the #uid to
the solid through the interface surface S may be written as

P
�
"!��(���

�
�
u
�
#�����u�#�

��
�
�
u
�
) ds. (66)

Here, r"1, ds"(dxd�), 04�42, and 04x42/k. Owing to the fact that the distur-
bance is a normal mode, the integral in equation (66) leads to

P
�
"

!4�e��� �[s (u�
�
�J H
��

#u� ��J H��#u�
�
�J H
��
)#cc]

nk
, (67)

where the H superscript indicates a complex conjugate. Of course, when the instabilty mode
is axisymmetric, the above expression becomes

P
�
"

!4�e��� �[s (u�
�
�J H
��

#u�
�
�J H
��
)#cc]

k
. (68)

Due to the fact that there is no energy source in an elastic medium, the growth of an
unstable mode in such a medium must be due to the energy #ux from the #owing #uid
toward the elastic solid. Thus, when the mode is unstable, the energy #ux toward the elastic
mediummust be positive. For both the axisymmetricMode I and Mode II waves, Figure 14
shows the e!ects of the coating thickness and the Reynolds number on the energy #ux from
the #owing #uid to the solid medium and the ampli"cation rate. A comparison is made in
the "gure between an elastic coating (E) and a viscoelastic (V) one. The same quantities are
plotted in Figure 15 for the azimuthally varying Mode III and Mode IV disturbances. As
can be seen, the energy #ux and the ampli"cation rate have the same algebraic sign when the
wall is elastic.

The above argument can be better understood from the energy balance equation for the
#uctuating component of the disturbance in the solid

d
�
E

�
"P

�
!D

�
, (69)

where E
�
is the energy of the solid, P

�
is the deformation work due to the stress at the

#uid}solid interface, and D
�
is the rate of energy dissipation due to the solid viscosity. The

energy #ux due to the work of the streamwise, radial and azimuthal stress were computed
by Hamadiche (1999a,b) and compared to the rate of ampli"cation and the total energy
transfer. It was found that the energy transfer to the solid is mostly due to the work of the
shear stress at low Reynolds numbers, say, Re(100, but is mostly due to the normal stress
at high Reynolds numbers. However, at high Reynolds numbers, the work done by the
radial stress is almost balanced by that done by the shear stress and the small di!erence
between the two determines the stability or instability of the system. This can be seen for
Mode II instability in Figure 16, reproduced from Hamadiche (1999a).
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It is important to note that the stability of the system at high Reynolds numbers is due to
the fact that the shear stress component returns to the #uid a quantity of energy greater
than the energy supplied to the solid by the radial stress component. It can be concluded
from the work of Hamadiche (1999a, b) that the energy transfer, at high Reynolds numbers,
is essentially due to the work done by the radial stress component, even though this term
does not contribute to the total energy of the disturbance. The azimuthal and shear stress
components often have a stabilizing e!ect at high Reynolds numbers.

The energy balance equation equation (69) does not display the energy transfer from the
mean #ow to the disturbance. This can be seen from the equation representing the total
system energy (Chandrasekhar 1981). Using Kumaran's (1995b) notations, such an equation
can be written in the following simple form:

d
�
E"C#S!D, (70)

where E is the total energy of the system, C is the rate of the energy production by the
Reynolds stress terms, S is the deformation work due to the shear stress at the interface, and
D is the rate of dissipation of energy in the #uid and in the solid. Owing to the discontinuity
of the velocity of the disturbance at the interface, we have

S"P
�
#P


"��[(v�!�

�
u
�
)�

��
]
���

ds, (71)
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where P

is the work done on the #uid at the interface. For both Mode I and Mode III,

Figure 17 shows the deformation work due to the shear stress at the interface and
a comparison with the rate of ampli"cation and the total energy #ux toward the solid. As
can be seen, the axisymmetric Mode I becomes stable even though the deformation work
S is positive. In fact, the deformation work at the interface in this case is set o! by the work
done by the Reynolds stress which is negative. Thus, the Reynolds stress stabilizes the
system when the disturbance is Mode I. For the non-axisymmetric Mode III, however, the
work done by the stress at the interface is positive only when the mode is unstable, as shown
in Figure 17(b). Figure 13 previously showed that the work done by the Reynolds stress, C,
is also positive, so that Mode III is destabilized by both the deformation work at the
interface and by the Reynolds stress.

6. DISCUSSION AND CONCLUDING REMARKS

In the present study, the stability of the incompressible Hagen}Poiseuille #ow of a Newton-
ian #uid in a compliant tube contained within a rigid, hollow cylinder was determined using
linear stability analysis. The wall was modelled as a homogeneous, incompressible, vis-
coelastic medium, where the stress has an elastic component proportional to the strain and
a viscous component proportional to the strain rate. The dynamics of the system is
in#uenced by four dimensionless parameters: the Reynolds number Re"(�<R/�); the ratio
of radii H; the ratio of the viscosities of the wall material and the #uid �

�
"(�

�
/�); and the

dimensionless velocity �"(�<�/G)���.
The linear stability theory was used to examine the temporal stability of the described

system subjected to in"nitesimal axisymmetric or non-axisymmetric disturbances. Once the
nonlinear terms were neglected, the resulting partial di!erential equations were transformed
into a system of "rst-order di!erential equations. This system was numerically integrated
using a fourth-order Runge}Kutta algorithm. The boundary conditions at the interface lead



STABILITY OF FLOW IN VISCOELASTIC TUBES 355
to an eigenvalue problem. Using Cauchy's theorem, the eigenvalues lying within a circle
�s�"a in the complex s-plane were found, where the center of the circle is located at the
origin of the complex plane. The present procedure allows for a good initial condition,
without guess, to a Newton}Raphson algorithm which readily converges to the more
accurate eigenvalues. Furthermore, the continuation method was used to "nd the eigen-
values for new values of the four dimensionless control parameters. In order to validate our
numerical method, we compared the present results with the results of Kumaran (1995a)
and the results of Salwen&Grosch (1972) and Gill (1973). The agreement between ours and
their results is very good.

We examined in more detail the unstable modes obtained with the two azimuthal wave-
numbers n"0 and 1. For n"0, we found two unstable axisymmetric modes which we
termed Mode I and Mode II. For n"1, there are two unstable non-axisymmetric modes:
Mode III and Mode IV. We found that for high Reynolds numbers, only Mode III persists.
When the depth of the viscoelastic layer goes to zero, Mode II andMode IV asymptote to the
least-damped modes of Hagen}Poiseuille #ow in a rigid-walled tube, while Mode I andMode
III become extremely stabilized. It is thus concluded that Mode II and Mode IV are #uid-
based instabilities, while Mode I and III are solid-based, #ow-induced surface instabilities.

The e!ect of the compliant-wall viscosity was examined. It was found that wall dissipa-
tion damps, to di!erent degrees, all four unstable modes. This suggests that these modes do
not belong to class A, introduced by Benjamin (1963). For all four unstable modes, we plot
in Figure 18 the group velocity and ampli"cation rate as functions of the wavenumber.
Mode I has a signi"cant positive group velocity, although consistently lower than the mean
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TABLE 1
Summary of all four instability modes

Mode I Mode II Mode III Mode IV

Symmetry Axisymmetric Axisymmetric Non-axisymmetric Non-axisymmetric

Base Solid-based Fluid-based Solid-based Fluid-based

n 0 0 1, 2, 3,2 1, 2, 3,2

(H!1)�1 Diverge Least-damped Diverge Least-damped
rigid-wall mode rigid-wall mode

Re�1 Stable Stable Unstable Stable

c
�

Positive Negative Positive for small k Nearly zero
Negative for large k

Solid viscosity Stabilizing Stabilizing Stabilizing Stabilizing
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#ow velocity at the center of the tube. It may thus be inferred that the solid-based,
axisymmetric Mode I is a #utter mode and belongs to class B. Mode II has a signi"cant
negative group velocity which is higher than the velocity of the mean #ow at the center of
the tube. The group velocity of Mode III is positive for low wavenumbers (long
wavelengths) and negative for high wavenumbers. The non-axisymmetric Mode III is very
dispersive. The group velocity of Mode IV is close to zero for most of the range of unstable
wavenumbers. This suggests that Mode IV, though #uid-based, is a standing-wave diver-
gence instability belonging to class C. An examination of the spatio-temporal instability,
along the lines described by Yeo et al. (1996, 1999) for a boundary layers, is required in order
to reveal the presence of a pinch point in the Fourier contour and thus to con"rm the
absolute nature of Mode IV instability. Table 1 summarizes the properties of Mode I}Mode
IV instabilities.

An inspection of the energy balance equation related to the viscoelastic wall shows that
the system is unstable when the energy #ux is from the #uid to the wall. The energy #ux
from the #owing #uid to the viscoelastic wall across the interface was numerically computed
and compared to the ampli"cation rate. It was found that the system is unstable (stable)
when the energy #ux is from (to) the #uid to (from) the viscoelastic medium. The power
developed by each force component at the interface was computed. It was found that at high
Reynolds numbers, the energy transfer from the #uid to the solid is mostly done by the work
of the component of the stress perpendicular to the wall (pressure force), while the tangential
stress plays a more important role at low Reynolds numbers.

Examination of the total energy balance for the coupled system showed that the
#uid-based disturbance energy is produced, to di!erent degrees, by the work of the viscous
shear stress at the interface between the #uid and the solid and the Reynolds stress in the
#uid. Computation of the work done by the shear stress at the interface and the velocity of
the disturbance showed that the energy of the unstable axisymmetric Mode I and non-
axisymmetricMode IV is produced by the work of the shear stress at the interface, while the
Reynolds stress tends to stabilize these disturbances. On the other hand, the energy of the
unstable axisymmetric Mode II and non-axisymmetric Mode III is produced by both the
Reynolds stress and the shear stress at the interface. Thus, the Reynolds stress seems to have
a stabilizing e!ect on Mode I and IV but a destabilizing e!ect on Mode II and Mode III.

The e!ect of the thickness of the viscoelastic material was also examined. Since the
displacement of the wall at r"H is restricted by the boundary condition applied at the
rigid wall, the system is expected to be stable for small values of (H!1). In fact, it was
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shown that the coupled system is stable when the depth of the viscoelastic material is very
small (H"1)05). Moreover, it was found that Mode II and Mode IV tend to the least-
damped modes in a rigid-walled tube, while Mode I and Mode III diverge when HP1
(depth of coating goes to zero). The e!ect of increasingH from 1 is to destabilize the system.

The e!ect of Reynolds number was also examined. Putting aside the e!ect of the other
control parameters, it was found that Mode I, Mode II and Mode IV become stable at high
Reynolds numbers, while Mode III remains unstable at high Reynolds numbers. It was
shown that the most excited mode may be an axisymmetric or non-axisymmetric one
according to the values of several parameters. We found that when the Reynolds number is
close to zero, the "rst excited mode is the axisymmetricMode I. When the Reynolds number
increases, the non-axisymmetric Mode IV with an azimuthal wavenumber n"1 becomes
the most unstable mode. By further increasing the Reynolds number, the previous mode is
replaced by the non-axisymmetric Mode III with an azimuthal wavenumber n"1. For
larger values of the Reynolds number, the "rst excited mode is the axisymmetric Mode II.

The unstable axisymmetric and non-axisymmetric eigenfunctions were plotted versus the
radial coordinate r. As intuitively expected, it was found that the radial velocity component
is small in comparison to the streamwise and azimuthal velocity components. The stream-
wise and azimuthal velocity components are, however, of the same order of magnitude. The
form of the unstable disturbance shows that the Reynolds stress tends to stabilize the
unstable non-axisymmetric Mode IV when the instability takes place at low Reynolds
numbers and the energy of the disturbance is supplied by the deformation work done at the
interface. The form of the unstable non-axisymmetric Mode III shows that the Reynolds
stress tends to destabilize the system and, together with the deformation work, supplies
energy to the unstable mode.

The low-Reynolds-number Mode I instability whose growth is energized only by the
work of the viscous shear stress at the #uid}solid interface is perhaps related in physical
origin to the surface-shear-dominated instability termed B

�
mode by Yeo (1988) who

identi"ed it while investigating the stability of the canonical boundary layer #ow over the
same type of compliant coating analyzed here. Yeo's mode would occur in the developing
region of a pipe #ow and might be the natural precursor to Mode I instability in the fully
developed region. Although the B

�
instability mode may not exist right down to zero

Reynolds number for a boundary layer due to the strong divergence of the mean #ow in that
regime, the instability can exist to signi"cantly high Re and may even merge or coalesce
with other instabilities as the surface becomes highly compliant, producing perhaps the like
of the coalescence Mode IV identi"ed in our investigation.

In the present formulation, we neglected the e!ect of pressure gradient along the undistur-
bed #ow on the compliant wall deformation. Owing to this favorable pressure-gradient, the
deformation would increase along the tube, thus slightly reducing the e!ective tube radius R.
A variable-radius pipe is a challenging, spatially inhomogeneous problem which we defer to
another study, and the radius R was taken as constant in the present formulation.

The results described here should be useful when designing a compliant coating to e!ect
certain bene"cial #ow-control goals in man-made pipe #ows. The present stability analysis
is linear, but extending the present exercise to nonlinear stability calculations may be
a useful next step. Finally, applying the compliant tube studies to the understanding of
bodily #uid #ows in various biological systems is certainly a worthwhile endeavor.
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